Π	Year	Π	Semester
---	------	---	----------

Code: 17CS401

L T P C 3 1 0 3

OPERATING SYSTEMS

OBJECTIVES:

- 1. Study the basic concepts and functions of operating systems.
- 2. Understand the structure and functions of OS.
- 3. Learn about Processes, Threads and Scheduling algorithms.
- 4. Understand the principles of concurrency and Deadlocks.
- 5. Learn various memory management schemes.
- 6. Study I/O management and File systems.
- 7. Learn the basics of Linux system and perform administrative tasks on Linux Servers.

UNIT I:

Introduction to Operating System Concept: Types of operating systems, operating systems concepts, operating systems services, Introduction to System call, System call types.

UNIT II

Process Management – Process concept, The process, Process State Diagram, Process control block, Process Scheduling- Scheduling Queues, Schedulers, Operations on Processes, Interprocess Communication, Threading Issues, Scheduling-Basic Concepts, Scheduling Criteria, Scheduling Algorithms.

UNIT III:

Concurrency: Process Synchronization, The Critical- Section Problem, Synchronization Hardware, Semaphores, Classic Problems of Synchronization, Monitors, Synchronization examples.

UNIT IV:

Deadlock: Principles of deadlock – System Model, Deadlock Characterization, Deadlock Prevention, Detection and Avoidance, Recovery form Deadlock

UNIT V:

Memory Management: Swapping, Contiguous Memory Allocation, Paging, structure of the Page Table, Segmentation Virtual Memory Management: Virtual Memory, Demand Paging, Page-Replacement Algorithms, Thrashing

UNIT VI:

File system Interface- the concept of a file, Access Methods, Directory structure, File system mounting, file sharing, protection. File System implementation- File system structure, allocation methods, free-space management Mass-storage structure overview of Mass-storage structure, Disk scheduling, Device drivers,

OUTCOMES:

- Design various Scheduling algorithms.
- Apply the principles of concurrency.
- Design deadlock, prevention and avoidance algorithms.
- Compare and contrast various memory management schemes.
- Design and Implement a prototype file systems.
- Perform administrative tasks on Linux Servers
- Introduction to Android Operating System Internals

TEXT BOOK:

- 1. Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin and Greg Gagne 9th Edition, John Wiley and Sons Inc., 2012.
- 2. Operating Systems Internals and Design Principles, William Stallings, 7th Edition, Prentice Hall, 2011.
- 3. Operating Systems-S Halder, Alex A Aravind Pearson Education Second Edition 2016.

REFERENCES:

- 1. Modern Operating Systems, Andrew S. Tanenbaum, Second Edition, Addison Wesley, 2001.
- 2. Operating Systems: A Design-Oriented Approach, Charles Crowley, Tata Mc Graw Hill Education", 1996.
- 3. Operating Systems: A Concept-Based Approach, D M Dhamdhere, Second Edition, Tata Mc Graw-Hill Education, 2007.