IV Year I Semester

Code: 17CS751

L T P C 0 0 3 2

CLOUD COMPUTING LAB (Skill Course lab-II)

OBJECTIVES:

- 1. To provide an overview of concepts of Cloud Computing.
- 2. To make the students understand concepts of virtualization and to use cloud as Infrastructure, Platform, Software services.
- 3. To understand the security features, user management of Cloud.

Experiment1:To study cloud architecture and cloud computing model **Experiment2**:Installation and Configuration of virtualization using KVM **Experiment3**:To study and implementation of Infrastructure as a Service **Experiment4**:To study and implementation of identity management **Experiment5**:To study and implementation of Storage as a Service **Experiment6**:To Study Cloud security management **Experiment7**:Mini Project

OUTCOMES:

- 1. Student should understand and appreciate cloud architecture.
- 2. Student can create and run virtual machines on open source OS
- 3. Student can implement Infrastructure, storage as a Service.
- 4. Students can install and appreciate security features and user management for cloud using web application.

IV Year I Semester

Code: 17CS751

L T P C 0 0 3 2

MACHINE LEARNING USING PYTHON (Skill course lab-II)

OBJECTIVES:

- 1. Construct machine learning basic algorithms Find-S etc.,
- 2. Read and anlyze contents of csv files
- 3. Applying K-Means and Back propogation algorithms

Experiment1:

Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.

Experiment2:

For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

Experiment3:

Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

Experiment4:

Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets.

Experiment5:

Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

Experiment6:

Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.

Experiment7: Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.

Experiment8: Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

Experiment9: Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.

Experiment10: Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

OUTCOMES:

• Understand the practical implementation of Machine Learning algorithms

IV Year I Semester

Code: 17CS751

MEAN STACK-II (Skill course lab-II)

OBJECTIVES:

- 1. Construct dynamic web pages using CSS and JS
- 2. Generate CRUD applications
- 3. Creating and Storing data with MongoDB

Experiment 1:

Write an Angular JS code which can build animated transition with the help of CSS

Experiment 2:

Write an Angular JS code which describes filters in Angular JS

Experiment 3:

Write an Angular JS code to display tables in different formats.

Experiment 4:

Write an Angular JS code to display Angular JS form and submit the data.

Experiment 5:

- a. Write a Java Script program in Node JS to read the data from the file?
- b. Write a Java Script program in Node JS to write the data to the file?

Experiment 6: (CRUD operations)

- a. Write a program in Node JS to check whether the database has been created successfully or not in MongoDB? (first install mongodb driver using npm install mongodb)
- b. Write a program in Node JS to insert single document in Mongo DB?
- c. Write a program in Node JS to insert multiple documents in MongoDB?
- d. Write a program in Node JS to update document in mongo db?
- e. Write a program in Node JS to delete single document in mongo db?

Experiment 7:

- a. Write a program in Node JS to display single document in mongo db?
- b. Write a program in Node JS to display multiple documents in mongo db?

Experiment 8:

Write a Java Script program using Node JS to send mail?

Experiment 9:

Write a Java Script program using Node JS to store the data from MongoDB to excel file? (Install append-stream using npm install append-stream)

Experiment 10:

Write a Java Script program to store and retrieve data from MongoDB using Node JS remotely?

Experiment 11:

Write a Java Script using Node JS to generate OTP CODE.

Experiment 12:

Write a Java Script program to perform Banking operations using NODEJS and MongoDB.

Experiment 13:

Write a MEAN stack application program to perform Blood Bank Management System.

OUTCOMES:

- Understand the dynamic web pages
- Understand how CRUD applications can be built
- Develop web design solutions using MEAN Stack

Code: 17EC651

L T P C 0 3 3 2

IoT USING RASPBERRY Pi lAB (Skill Course Lab-I)

Pre- requisites:

- A. IoT Basics
- B. Raspberry Pi Basics
- C. Python programming Basics

A) IoT Basics: IoT Introduction, Important Definitions and terminology, Architecture, Examples, communication Protocols

B) Raspberry Pi Basics: Different types of Raspberry pi models, Pin configuration of Raspberry pi Different types of OS for Raspberry Pi, OS installation into Raspberry pi.

C) Python programming Basics: Introduction to programming with Python, Data types, core objects and built in functions, conditional statements and loops, Functions, strings, Lists, Dictionaries, Tuples with examples.

Experiments: Interfacing devices with Raspberry Pi using Python Programming

- 1. LED Blinking with Raspberry pi.
- 2. Button/Switch Interfacing
- 3. Relay and Buzzer Interfacing
- 4. IR/ PIR sensor interfacing
- 5. Servo motor interfacing
- 6. Ultrasonic sensor interfacing
- 7. DHT11 sensor Interfacing
- 8. LCD Interfacing
- 9. Controlling relay from cloud
- 10. Implementing IoT Gateway
- 11. Implementing MQTT protocol
- 12. Building a weather monitoring system
- 13. Building Home Automation System